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Abstract
The quality of predicted plant-, soil-, and animal-response values from near-
infrared (NIR) reflectance spectra depends on the ability to generate appropri-
ate NIR models. The first step in the development of NIR models is collection of
spectral data. Limitedwork, however, has been reported that comparesNIRmod-
els for prediction of forage nutritive value when the spectra are obtained from
deviceswith different spectral ranges and resolutions. The objectives of this study
were to (a) develop and evaluate NIR spectroscopy models using a benchtop-
type (FOSS) and two handheld NIR devices (microPHAZIR and DLP NIRscan
Nano EVM) to predict crude protein (CP), acid detergent fiber (ADF), amylase
and sodium sulfite-treated neutral detergent fiber (aNDF), and in vitro true dry
matter digestibility (IVTD) of dried ground forage grass samples and (b) com-
pare predictions among the three NIR devices. Switchgrass (Panicum virgatum
L.) and bermudagrass [Cynodon dactylon (L.) Pers] hay samples were scanned
with the NIR devices and analyzed with wet chemistry for development of NIR
prediction models. Among devices, the r2 of validation values for aNDF mod-
els ranged from .81 to .87; all other r2 values were >.86 and as high as .98 with
standard error of prediction (SEP; g kg−1) ranging from 8.1 to 11.5 for CP, 19.1 to
23.8 for aNDF, 14.2 to 20.0 for ADF, and 26.8 to 49.9 for IVTD. The FOSS bench-
top NIR prediction models consistently had the highest r2 and lowest SEP val-
ues; however, the predictive power for both handheld devices was similar to the
benchtop-type device.

Abbreviations: ADF, acid detergent fiber; aNDF, amylase and sodium
sulfite-treated neutral detergent fiber; CP, crude protein; DT, detrend;
IVTD, in vitro true dry matter digestibility; LOF, local outlier factor;
MSC, multiplicative scatter correction; NIR, near-infrared; R2_cv,
coefficient of determination of cross-validation; RPD, ratio of
performance to deviation; SECV, standard error of cross-validation; SEP,
standard error of prediction; SNV, standard normal variate.
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1 INTRODUCTION

Near-infrared reflectance spectroscopy is a nondestructive
analysis technology that can be used for rapid determina-
tion of constituents of various materials. The foundational
relationship between NIR spectra and biology is that
NIR-irradiated objects absorb and reflect light based
on their molecular composition (Shenk, Workman, &
Westerhaus, 2008). The work by Norris, Barnes, Moore,
and Shenk (1976) marked a milestone for the use of NIR
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spectra to predict forage nutritive value. We direct the
reader to Roberts, Stuth, and Flinn (2004) for basic aspects
of NIR spectroscopy applications in forages and feedstuffs,
to Batten (1998) for a review of the contributions of NIR
technology to agriculture, and to Burns (2011) for a his-
torical perspective of its use in the animal–plant interface.
Noteworthy extensions of NIR spectroscopy applications
are determination of nutrient digestion and dry matter
intake by animals from dried ground forage samples (Nor-
ris et al., 1976) and direct estimation of animal responses
(i.e., dry matter intake, digestibility, and diet selection) via
spectral scans of feces (Burns, 2011; Dixon & Coates, 2009).
The assumption is that NIR spectroscopy applications

are as good as the prediction models developed out of
meaningful biochemical entities, hence they are consid-
ered a spectrochemical model. Therefore, the quality of
predictions for plant-, soil-, and animal-response values
from NIR spectra depend on the ability to generate appro-
priate NIR models. The first step in development of NIR
models is collection of spectral data from a sample pop-
ulation. There are several devices available in the market
to collect spectral data with a wide range of specifications
(e.g., spectral range and resolution, benchtop vs. portable)
and market price (Workman & Burns, 2007). Traditional
NIR devices have a benchtop-type configuration, high
resolution and associated high cost, and they have been
mainly used by trained personnel working in commercial
and research laboratories. Recent technological advances
brought to market a variety of portable spectroscopy
devices (Crocombe, 2018) that are more affordable and
could potentially be a tool in the hands of farmers or con-
sultants for in situ analysis (Pérez-Marín, Paz, Guerrero,
Garrido-Varo, & Sánchez, 2010; Starks, Brown, Turner, &
Venuto, 2015;Warburton, Brawner, &Meder, 2014). A great
deal of literature has reported successful development of
NIR models to predict many traits of several forage species
including prediction of chemical constituents (Saha et al.,
2018), nutritive value (Burns, Fisher, & Rottinghaus,
2006), ethanol yield (Vogel et al., 2011), ergot alkaloid
concentration (Roberts, Benedict, Hill, Kallenbach, &
Rottinghaus, 2005), and botanical composition (Coleman,
Christiansen, & Shenk, 1990; Karayilanli, Cherney, Sirois,
Kubinec, & Cherney, 2016).
The methodology developed by Shenk and Westerhaus

(1991) for population definition, sample selection, and cal-
ibration has been widely adopted for NIR model develop-
ment in the realm of forage work. Limited work, however,
has been reported that compares predictions of basic esti-
mates of forage nutritive value when the sample dataset
is scanned with different NIR devices. The specific objec-
tives of this study were to (a) develop and evaluate NIR
spectroscopic models using reflectance acquired from one
benchtop- and two handheld-type NIR devices to predict

Core Ideas

∙ Forage nutritive value estimates were success-
fully predicted using NIR models.

∙ The predictive power of the handheld devices
was very similar to that of the benchtop device.

∙ Different spectral transformations optimized
the NIR models per analyte and per device.

∙ Further investigation of handheld NIR devices
is warranted.

CP, ADF, aNDF, and IVTD of dried ground forage grass
samples and (b) compare predictions among the three
NIR devices.

2 MATERIALS ANDMETHODS

2.1 Database description and sample
preparation

Samples from two warm-season perennial grass species,
switchgrass and bermudagrass, were randomly selected
from three independent trials. Switchgrass has dual poten-
tial as a bioenergy and forage crop and to complement and
improve the overall productivity of traditional tall fescue
[Lolium arundinaceum (Schreb.) Darbysh.] pasture-based
livestock systems in the transition region of the United
States (Burns, Mochrie, & Timothy, 1984; USDA, 2018).
Bermudagrass is the most important warm-season grass
species for livestock production in the southeast United
States (Hill, Gates, & West, 2001).
The complete database for CP, aNDF, and ADF had

a total of 210 samples (138 switchgrass and 72 bermuda-
grass). For IVTD, the database had a total of 100 sam-
ples (from switchgrass only). The switchgrass samples
originated from two experiments conducted for 2 yr. The
first experiment evaluated the effects of harvest frequency
(clipped every 3, 6, 9, and 12 wk) and intensity (10, 20,
30, and 40 cm stubble height) of cv. Performer (Bekewe,
Castillo, & Rivera, 2018); the second experiment evaluated
harvest timing (before and after frost) of cultivar BoMas-
ter when clipped once or twice per year. The bermuda-
grass samples originated from a 3-yr experiment that eval-
uated five cultivars (Tifton 85, Tifton 44, Oazark, Midland
99, and Coastal) fertigated with swine (Sus scrofa domesti-
cus) lagoon effluent. The bermudagrass samples were col-
lected from plots harvested to 8 cm stubble height every
time the canopy height was approximately 35–40 cm. In
the field, the sampling protocol for both forages consisted
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TABLE 1 Near infrared devices used to predict crude protein, acid detergent fiber, amylase and sodium sulfite-treated neutral detergent
fiber, and in vitro true digestibility of switchgrass (Panicum virgatum L.) and bermudagrass [Cynodon dactylon (L.) Pers] samples

Device ID Type
Spectral
range

Wavelength
interval

No. of
Wavelengths

nm
FOSS 6500 NIRSystems FOSS Benchtop 1100–2498 2 700
Thermo Scientific
microPHAZIR

microPHAZIR Handheld 1600–2400 8 100

Texas Instruments DLP
NIRscan Nano EVM

Nano Handheld 900–1700 5 160

of clipping within an area ≥3 m2; then, a subsample of
∼1 kg was dried in a forced-air oven at 60 ◦C until the
samples achieved constantweight. The dried sampleswere
ground using a Wiley mill with four rotating and six
stationary knives that produce a shearing action (A. H.
Thomas Co.) to pass through a 1-mm screen and sub-
sequently stored in Whirl-Pak bags. Each sample in the
database represents a field experimental unit (hence, a
unique replicate-sampling event–treatment–year combi-
nation).

2.2 Near-infrared devices and wet
chemistry analyses

In the laboratory, 4 g of ground material of each sample
were placed in spinning-sample module cups with quartz
bottoms used in the FOSS 6500 device and then scanned
using one benchtop and two handheld NIR spectroscopic
devices. Information about spectral range, wavelength
interval, and number of wavelengths for the three devices
is provided in Table 1. The FOSS 6500 is a benchtop-
type device and has the capability to obtain spectra in the
visible-NIR spectral range (400–2498 nm); however, for the
purpose of this study we used the spectra in the NIR region
(1100–2498 nm) only. A total of 32 scans per sample were
performed by the FOSS device and the software provided
the mean spectrum for each sample. The two handheld
devices were the microPHAZIR (ThermoFisher Scientific,
2020) and DLP NIRscan Nano EVM (Texas Instruments,
2020). For the handheld devices, samples were scanned in
four positions by rotating the sample cups 90◦ and taking
measures while in static position. Custom R scripts (R
Core Team, 2016) were developed to calculate the mean
reflectance spectrum of each sample for the handheld
devices. The handheld devices were not in direct contact
with the ground sample (although they have capability for
direct contact with the sample); instead, scans were taken
through the cover glass of the FOSS module cups that
contained the samples. In this way, the exact same sample
packed in the same cupwas scannedwith all three devices.

Wet chemistry analyses were performed by the Dairy
One Forage Laboratory (Ithaca, NY). In summary from the
laboratory analytical procedures of Dairy One (2015), con-
centration of CPwas calculated bymultiplying the concen-
tration of total N (determined by dry combustion using a
LECO CN628) by 6.25. The aNDF and ADF concentrations
were determined using Methods 13 and 12, respectively, of
the ANKOM Fiber Analyzer (ANKOM Technology). For
IVTD, samples were analyzed using a 48-h in vitro diges-
tion procedure (Daisy II incubator; Method 3) (Dairy One,
2015). Standard deviation (and associated coefficients of
variation, %) for replicate wet chemistry analyses of a stan-
dard sample from the Dairy One Forage Laboratory are 2.6
(1.15%), 10.2 (3.94%), 11.2 (2.95%), and 26.2 (1.81%) g kg−1 for
CP, ADF, aNDF, and IVTD, respectively. Descriptive statis-
tics of laboratory results are presented in Figure 1.

2.3 Near infrared model development

Model development was performed using a data analysis
pipeline written in R environment (R Core Team, 2016).
The pipeline was previously used in the successful devel-
opment of NIR models to determine chemical properties
of wood (Hodge, Acosta, Unda, Woodbridge, & Mans-
field, 2018) and nutritive value of switchgrass (Bekewe,
Castillo, Acosta, & Rivera, 2019) and a mixture of native
warm-season grasses (Castillo, Tiezzi, & Franzluebbers,
2020). The pipeline has two separate phases: (a) trans-
formations and outlier detection and (b) model training,
cross-validation, and prediction of new observations. In
summary for the NIR pipeline: first, mathematical trans-
formations of the spectra were applied to raw (log R−1)
NIR spectra to remove the scattering of diffuse reflections
associated with sample particle size and to improve sub-
sequent regression analyses. Scatter-correction methods
included multiplicative scatter correction (MSC), stan-
dard normal variate (SNV), and detrend (DT). Spectral
derivativemethods included second-order polynomial and
second derivative of Savitzky-Golay smoothing with two
different window sizes of five and seven points (SG5 and
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F IGURE 1 Histograms and descriptive statistics of nutritive value estimates for switchgrass (Panicum virgatum L.) and bermudagrass
[Cynodon dactylon (L.) Pers] samples. Filled bars correspond to switchgrass samples andwhite-filled bars correspond to bermudagrass samples.
Crude protein, amylase and sodium sulfite-treated neutral detergent fiber, and acid detergent fiber samples in the database included switchgrass
and bermudagrass samples; for the in vitro true digestibility database, only switchgrass samples were included

SG7). We also combined pairs of transformations (SNV
+ DT, MSC + DT, SNV + SG, MSC + SG, and DT + SG).
Local outlier factors (LOFs) were used to filter out atypical
spectral data (Breunig, Hans-Peter, Raymond, & Sander,
2000). Traditional distance-based multivariate methods
for outlier detection identify outlier observations if their
deviation from a global distribution centroid is greater
than a defined threshold. Measurements likeMahalanobis

distance typically take a global view of the data set and
identify outliers as observations that are extremely distant
from the global centroid. This may not be ideal if the
dataset exhibits a complex structure (e.g., with several
clustered populations). In contrast, the LOF is a density-
based outlier detectionmethod thatmeasures the degree to
which an observation is isolated from its nearest surround-
ing neighbors, and it scores each observation according
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TABLE 2 Number of samples identified as outliers and number of samples in the resulting outlier-free databases used for development
of near-infrared models for crude protein (CP), amylase and sodium sulfite-treated neutral detergent fiber (aNDF), acid detergent fiber
(ADF), and in vitro true digestibility (IVTD). Outliers were defined as samples with local outlier factor values >2

Modela Variable Device
Spectral trans-
formationb No. of outliers

No. of samples in
outlier-free database

Full-dataset CP FOSS SNV 1 209
microPHAZIR MSC 0 210
Nano SNV 0 210

aNDF FOSS DT_SG7 0 210
microPHAZIR MSC 0 210
Nano DT 0 210

ADF FOSS SG7 0 210
microPHAZIR NIR 0 210
Nano SG7 0 210

IVTD FOSS DT 0 100
microPHAZIR SNV 0 100
Nano DT_SG7 0 100

Split-dataset CP FOSS MSC 1 159
microPHAZIR NIR 0 160
Nano NIR 0 160

aNDF FOSS SNV 1 159
microPHAZIR MSC 0 160
Nano MSC_SG7 0 160

ADF FOSS SG7 0 160
microPHAZIR NIR 0 160
Nano SNV_SG7 0 160

IVTD FOSS SNV_SG7 0 75
microPHAZIR DT 0 75
Nano SNV 0 75

aFull-dataset models used all samples in the database for calibration and cross-validation; split-datasetmodels used≈75% of samples in the database for calibration
and the remaining 25% of samples as test-set.
b SNV, standard normal variate; MSC, multiplicative scatter correction; DT_SG7, Detrend plus Savitzky–Golay smoothed spectra using seven point; NIR, raw
spectra (log R−1; R = reflectance).

to the ratio between the average densities of its neighbors
and itself. If the distance from a given observation to its
nearest neighbors is always large, that observation is con-
sidered a local outlier. Breunig et al. (2000) recommended
using at least 10 neighboring points for the calculation
of the LOF, and they demonstrated that the distribution
of the LOF scores for a population is centered around
one, with a very narrow standard deviation (ranging
from 0.1 to 0.4). For our analysis, we set the algorithm to
calculate an LOF score for each observation based on its
20 nearest neighbors. Samples with LOF values greater
than two were excluded from the analysis (since LOF >

2 will be roughly equivalent to the mean + 3 SD). The
number of samples identified as outliers in the database
as well as the resulting number of samples in the outlier-
free datasets for each device and variable are presented
in Table 2.

Second, outlier-free datasets for the rawNIR spectra and
all transformations were used to fit NIR models between
spectral data and wet chemistry laboratory values. Partial
least squares regression was implemented using the
R-package pls (Mevik &Wehrens, 2016) and model perfor-
mance was evaluated using leave-one-out cross-validation
(Browne, 2000; Diana & Tommasi, 2002). The leave-one-
our method uses as many cross-validation points (groups)
as there are number of observations present in the model
(n). For example, if n = 100, then a total of 100 models will
be trained and tested using this type of cross-validation.
Desirable models are those that maximize the coefficient
of determination of cross-validation (R2_cv), minimize
the standard error of cross-validation (SECV), and have
a small number of latent variables (projection factors).
Since the objective of the study was to compare different
NIR devices, we followed a specific two-step decision
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TABLE 3 Fit statistics of near-infrared models for the full- and split-datasets for prediction of crude protein (CP), amylase and sodium
sulfite-treated neutral detergent fiber (aNDF), acid detergent fiber (ADF), and in vitro true digestibility (IVTD) of switchgrass (Panicum
virgatum L.) and bermudagrass [Cynodon dactylon (L.) Pers]. Model performance was evaluated using leave-one-out cross-validation

Modela Variable Device
Spectral
transformationb Factorsc R2_cd SECe R2_cvf SECVg

g kg−1 g kg−1

Full-dataset CP FOSS SNV 18 .99 5.0 .99 6.0
microPHAZIR MSC 9 .98 7.5 .97 8.7
Nano SNV 12 .97 8.6 .96 10.9

aNDF FOSS DT_SG7 5 .90 16.2 .89 16.6
microPHAZIR MSC 8 .89 17.1 .86 19.2
Nano DT 12 .91 15.3 .85 19.5

ADF FOSS SG7 6 .84 21.8 .82 23.6
microPHAZIR NIR 8 .84 21.6 .80 24.7
Nano SG7 5 .84 22.1 .79 25.3

IVTD FOSS DT 10 .99 16.9 .98 20.7
microPHAZIR SNV 4 .97 26.3 .96 28.7
Nano DT_SG7 3 .96 30.8 .95 33.4

Split-dataset CP FOSS MSC 16 .99 4.7 .99 5.9
microPHAZIR NIR 7 .98 7.1 .98 7.8
Nano NIR 12 .98 8.0 .96 10.1

aNDF FOSS SNV 9 .90 15.8 .88 17.8
microPHAZIR MSC 8 .90 15.7 .87 18.5
Nano MSC_SG7 6 .91 15.2 .86 18.8

ADF FOSS SG7 6 .83 23.5 .79 26.0
microPHAZIR NIR 8 .84 22.6 .78 26.9
Nano SNV_SG7 6 .84 22.4 .76 27.6

IVTD FOSS SNV_SG7 6 .99 13.8 .98 19.3
microPHAZIR DT 3 .97 26.7 .96 29.0
Nano SNV 13 .99 13.0 .96 30.7

aFull-dataset models used all samples in the database for calibration and cross-validation; split-dataset models used ≈75% of samples in the database for calibra-
tion and the remaining 25% of samples as test-set.
b SNV, standard normal variate; MSC, multiplicative scatter correction; DT_SG7, detrend plus Savitzky–Golay smoothed spectra using seven points; NIR, raw
spectra (log R−1).
cNumber of loading factors (latent variables) in the partial least squares regression models.
dR2_c, coefficient of determination, calibration.
e SEC, standard error of calibration.
fR2_cv, coefficient of determination, cross-validation.
g SECV, standard error of cross-validation.

algorithm to identify the best NIR model for each analyte–
device combination without any subjective input into the
process. First, one model for each spectral transformation
(total of 14) was selected based on the first local mini-
mum SECV as a strategy to prevent overfitting (Osten,
1988). Second, the resulting 14 models were then ranked
according to their R2_cv and the best selected model for
each analyte–device combination was the model with
the highest R2_cv value. Hence, the number of latent
variables of each model is a consequence of the previous
selection approach. The resulting models are presented in
Table 3.

Two types of models are presented in Table 3 based
on the number of samples used in the training set. The
models that were fitted using all observations in the
outlier-free dataset are hereafter referred to as full-dataset;
models developed using ≈75% of the observations in the
outlier-free database are hereafter referred to as split-
dataset. The leave-one-out cross-validation was used to
develop the calibration equation for both types of mod-
els. Then for the split-dataset models, the ≈25% of the
observations not used in the calibration (hereafter referred
to as test set) were used to evaluate prediction perfor-
mance. Sample selection for the split-dataset models and
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the methodology for comparison of NIR predicted val-
ues vs. wet-chemistry laboratory values is described in the
following section.

2.4 Near-infrared model comparison

Performance evaluation of the predictions comparing the
three NIR devices was done using the split-dataset mod-
els (Table 3). The full outlier-free database was randomly
split in two sets: training set and test set. The training set
consisting of ≈75% of observations was used for develop-
ment of the split-database models. The test set (remain-
ing ≈25% of observations) was used for performance eval-
uation of predictions. The samples in both datasets, train-
ing and test set, are unique and do not overlap between
sets. For CP, ADF, and aNDF, a total of 160 observations
were randomly selected to form the training set and the
50 remaining samples were used for the test set, with the
exception of the CP and aNDF models in the FOSS device,
which had 159 samples (Table 2). To verify that the distribu-
tion of samples in the dataset followed the species compo-
sition of the full database, we calculated the proportion of
bermudagrass samples. The full database had 72 bermuda-
grass samples out of 210 (proportion = .34); the training
set had 54 bermudagrass samples out of 160 (proportion =
.34); and the test set had 18 bermudagrass samples out of 50
(proportion = .36). For IVTD (switchgrass samples only),
the training set was created by randomly selecting 75 obser-
vations and the remaining 25 observations were then used
for the test set.We assessed the predictive power of theNIR
models by plotting scatterplots for CP, aNDF, ADF, and
IVTD of NIR predicted values on the x-axis and wet-
chemistry laboratory values on the y-axis (Figure 2);
in addition, we calculated the coefficient of determina-
tion (r2), SEP, ratio of performance to deviation (RPD)
(Williams, Darnenne, & Flinn, 2017), bias, intercept, and
slope (Table 4).

3 RESULTS AND DISCUSSION

The data analysis pipeline generates summary tables with
fit statistics and figures for all the possible NIR models
for each response variable per device. An example table
with 14 models generated to predict IVTD from samples
in the split-dataset scanned with the Nano device is pre-
sented in Table 5. Additionally, Figure 3 shows an exam-
ple output of SECV and (R2_cv) as a function of the num-
ber of factors (latent variables) for the SNV model pre-
sented in Table 5. It is apparent from Table 5 that there
are several models developed with different spectral trans-
formations that all have excellent fit statistics and that

could be used to predict IVTD. For the variable IVTD, the
model selection algorithm previously described identified
the SNVmodelwith 13 factors as the best calibrationmodel
for the Nano device because it had the highest R2_cv =
.96 and lowest SECV= 30.7 among all spectral transforma-
tions (Table 5); it was then further evaluated with the test
set as presented in Table 4. If choosing a model for oper-
ational use, the final model selection would be a decision
to be made by the researcher and could consider a com-
promise among the fit statistics of each model. Some ana-
lysts might consider the number of latent factors to be a
very important model selection criterion, and in that case,
might prefer a different spectral transformation. For exam-
ple, the DT_SG7 model with six factors had only slightly
lower values for R2_cv = .95, and slightly higher values for
SECV = 33.4 than the 13-factor SNV model. Or some ana-
lysts might instead choose the DTmodel with nine factors,
and R2_cv = .96, and SECV = 31.0 (Table 5). The lower
number of latent factors might mean that these models
would be more precise and accurate for future operational
use than the SNVmodel. However, these very slight differ-
ences in R2_cv and SECV would not change any conclu-
sions in this study regarding the relative utility of the three
NIR devices.
The fit statistics for models generated with the full-

dataset (using 100% of samples the database) and the
split-dataset (using 75% of the database) were very sim-
ilar (Table 3). However, it is worth noting that different
mathematical transformations and with different number
of latent variables optimized the NIR models for each ana-
lyte and device, highlighting the advantages of a flexi-
ble data analysis pipeline for development of models. In
general, R2_c and R2_cv values were >.95 for CP and
IVTD, >.85 for aNDF, and >.79 for ADF (Table 3). Mod-
els with greater R2_c and R2_cv values had lower SEC and
SECV values. The values of SEC and SECV (g kg−1) in the
split-dataset models (Table 3) were lowest for CP (≤10.1),
ranged from 15.2 to 18.8 for aNDF, from22.4 to 27.6 forADF,
and from 13.0 to 30.7 for IVTD. The aforementioned values
are comparable to, and in some instances better than, the
fit statistics of the NIRS Forage and Feed Testing Consor-
tium level 2 equations as disclosed by Pittman et al. (2016)
and Saha et al. (2018) for grass hay (‘13GH50-2.eqa’) and
mixed hay (‘16mh50-2.eqa’), respectively.
Prediction performance of the NIR models was assessed

using the split-dataset models and the test-set (Table 4;
Figure 2). With the exception of the models for aNDF
where r2 values ranged from .81 to .87, all other r2 values
were ≥.86 and as high as .98, with SEP (g kg−1) ranging
from8.1 to 11.5 for CP, from 19.1 to 23.8 for aNDF, 14.2 to 20.0
for ADF, and from 26.8 to 49.9 for IVTD (Table 4). In addi-
tion to r2 and SEP estimates, Table 4 presents the results of
RPD, bias, and upper and lower limit of 95% confidence
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F IGURE 2 Validation scatterplots of wet-chemistry values (ordinate) and near infrared (NIR) predictions (abscissa) for crude protein,
amylase and sodium sulfite-treated neutral detergent fiber, acid detergent fiber, and in vitro true digestibility of bermudagrass and switchgrass
samples. Filled circles correspond to switchgrass and white-filled circles to bermudagrass samples. The dotted line in each figure represents a
line with slope = 1 and the solid line represents the linear-regression line for the data
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TABLE 5 Example summary table of fit statistics of several near-infrared models (n = 75; split-dataset) developed to predict in vitro true
digestibility (IVTD) from spectra collected using the Nano handheld near-infrared spectroscopic device described in Table 1. The model in the
first row was selected as the best model and further evaluated using a test set in Table 4 and Figure 2

Spectral transformationa Factorsb R2_cc SECd R2_cve SECVf

g kg−1 g kg−1

SNV 13 .99 13.0 .96 30.7
MSC 10 .98 18.6 .95 32.0
DT 9 .98 19.3 .96 31.0
SG5 5 .97 25.5 .93 38.6
SG7 8 .99 15.0 .94 34.4
SNV_DT 9 .98 19.3 .96 31.0
MSC_DT 9 .98 19.3 .96 31.0
SNV_SG5 6 .98 20.6 .94 35.5
SNV_SG7 6 .98 19.5 .95 32.9
MSC_SG5 6 .98 21.6 .93 38.4
MSC_SG7 8 .99 15.5 .93 37.4
DT_SG5 6 .98 20.8 .94 35.7
DT_SG7 6 .98 19.7 .95 33.4
NIR 12 .98 19.1 .95 33.1

a SNV, standard normal variate; MSC, multiplicative scatter correction; DT, detrend; SG5, Savitzky-Golay smoothed spectra using five points; NIR, raw spectra (log
R−1).
bNumber of loading factors (latent variables) in the partial least squares regression models.
cR2_c, coefficient of determination, calibration.
d SEC, standard error of calibration.
eR2_cv, coefficient of determination, cross-validation.
f SECV, standard error of cross-validation.

F IGURE 3 Example of fit statistics as a function of number of latent variables (factors) for the first model presented in Table 5

intervals for the intercept (ß0) and slope (ß1) of each of
the regression models presented in Figure 2. Acceptable
models are those with bias values closer to zero, slope val-
ues closer to 1, and intercept values closer to zero. The
RPD values ranged from 2.2 to 6.8. Chang, Laird, Maus-

bach, and Hurburgh (2001) suggested that RPD values >2
indicate a model with good prediction ability; however,
Williams (2014) presented different and higher threshold
values for RPD. Minasny and McBratney (2013) indicated
that reporting RPD valuesmay be redundant when already
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F IGURE 4 Raw spectra measured by three near infrared spectroscopy devices. The plotted spectra correspond to the mean values of all
scanned samples across instrument resolutions

reporting r2 values for normally distributed variables and
large datasets.
The average raw spectrum was different among devices

(Figure 4). The three devices have different light sources,
generate different intensities of light at different wave-
lengths, and use different reflectance detection mecha-
nisms, so it is expected that the spectra look somewhat
different. However, it is clear that the peaks and valleys
of spectra from the different devices are generally aligned
in the overlapping wavelength ranges (Figure 4). In gen-
eral, the models obtained with the FOSS 6500 NIRSys-
tems device had better fit statistics, followed closely by the
Thermo Scientific microPHAZIR, and the Texas Instru-
ments DLP NIRscan Nano EVM. The FOSS device cov-
ered a wider spectral range (1100–2498 nm) at a 2-nm
wavelength interval vs. the microPHAZIR (1600–2400 nm;
every 8 nm) and the Nano (900–1700 nm; every 5 nm).
In a study with pharmaceuticals, Kolomiets and Siesler
(2004) reported that spectral resolution did not have a
systematic influence on the accuracy of the chemomet-

ric evaluation. Similarly, in a study that evaluated three
NIR devices (covering 1000–2500 nm, 1140–2200 nm, and
1580–2400 nm) to determine the concentration of ros-
marinic acid inRosmarini folium,Kirchler et al. (2017) con-
cluded that resolution of the devices seemed to be of sec-
ondary importance relative to spectral range. Rosmarinic
acid concentration was ∼3% of the leaf mass (Kirchler
et al., 2017), and this study showed that rosmarinic acid
and the surrounding molecules produced from 6 to 11
important absorption bands in the spectral range, depend-
ing on the device. In our study, the FOSS machine cov-
ered a very large range, while the microPHAZIR covered
about one-half of that range, and the Nano covered the
other half of the range. The concentration of analytes in
this study ranged from 140.7 to 717.6 g kg−1 of dry matter
(CP and aNDF, respectively). All three devices produced
models that predicted all forage nutritive values with very
similar precision (Table 4). This implies that there are a
number of informative bands (sufficient for very accurate
model development) across the entire NIR range from 1100
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to 2498 nm, and that no specific portion of the range is
absolutely critical to good NIR models for the analytes in
this study. It is clear that for all nutritive value estimates,
the NIR-predicted values are very close to the laboratory-
measured values, indicating a strong goodness of fit for
the selected models (r2 between .81 and .98; SEP of 8.1–11.5
for CP, 19.1–23.8 for aNDF, 14.2–20.0 for ADF, and 26.8–
49.9 for IVTD) (Figure 2). Additionally, indications of het-
eroskedasticity or under–over estimation are not observed.
However, dispersion of points around reference lines (lin-
ear model and Y = X) varied across device and specific
nutritive value estimate. For instance, among the nutri-
tive values, the smallest dispersions are observed in the
CP models; among devices, the dispersion of the points
is always lower for the FOSS model than for the microP-
HAZIR or Nano.

4 CONCLUSIONS AND IMPLICATIONS

Forage nutritive value estimates were successfully pre-
dicted using NIR models. Consistently, the prediction
models from the benchtop-type device (FOSS) had the
highest r2 and lowest SEP values; however, the predic-
tive power of the handheld-type devices (microPHAZIR
and Nano) was very similar to the benchtop-type device,
notwithstanding instrument differences and spectral range
differences. Different mathematical transformations and
different number of latent variables optimized the NIR
models per analyte and per device, thus highlighting a ben-
efit of flexible NIR model developing software. Our results
indicate that handheld NIR spectroscopy devices have
potential to generate comparable NIRmodels to benchtop-
type devices for prediction of forage nutritive value esti-
mates; hence, further investigation of handheld devices is
warranted.
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